Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Biosystems ; 237: 105138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340977

ABSTRACT

Pancreatic ß-cells are equipped with the molecular machinery allowing them to respond to high glucose levels in the form of electrical activity and Ca2+ oscillations. These oscillations drive insulin secretion. Two key ionic mechanisms involved in this response are the Store-Operated Current and the current through ATP-dependent K+ channels. Both currents have been shown to be regulated by the protein STIM1, but this dual regulation by STIM1 has not been studied before. In this paper, we use mathematical modelling to gain insight into the role of STIM1 in the ß-cell response. We extended a previous ß-cell model to include the dynamics of STIM1 and described the dependence of the ATP-dependent K+ current on STIM1. Our simulations suggest that the total concentration of STIM1 modifies the bursting frequency, the burst duration and the intracellular Ca2+ levels. These results are in good agreement with experimental reports, and the contribution of the studied currents to electrical activity and Ca2+ dynamics is discussed. The model predicts that in the absence of STIM1 the excitability of the plasma membrane increases and that the glucose threshold for electrical activity is shifted to lower concentrations. These computational predictions may be related to impaired insulin secretion under conditions of reduced STIM1 in the diabetic state.


Subject(s)
Insulin-Secreting Cells , Stromal Interaction Molecule 1 , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , Glucose/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Stromal Interaction Molecule 1/metabolism , Humans
2.
Front Immunol ; 14: 1235737, 2023.
Article in English | MEDLINE | ID: mdl-37860008

ABSTRACT

Cellular Ca2+ signaling is highly organized in time and space. Locally restricted and short-lived regions of Ca2+ increase, called Ca2+ microdomains, constitute building blocks that are differentially arranged to create cellular Ca2+ signatures controlling physiological responses. Here, we focus on Ca2+ microdomains occurring in restricted cytosolic spaces between the plasma membrane and the endoplasmic reticulum, called endoplasmic reticulum-plasma membrane junctions. In T cells, these microdomains have been finely characterized. Enough quantitative data are thus available to develop detailed computational models of junctional Ca2+ dynamics. Simulations are able to predict the characteristics of Ca2+ increases at the level of single channels and in junctions of different spatial configurations, in response to various signaling molecules. Thanks to the synergy between experimental observations and computational modeling, a unified description of the molecular mechanisms that create Ca2+ microdomains in the first seconds of T cell stimulation is emerging.


Subject(s)
Calcium Channels , T-Lymphocytes , Calcium Channels/metabolism , T-Lymphocytes/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Computer Simulation
3.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37339181

ABSTRACT

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Subject(s)
Endothelial Cells , Extracellular Matrix Proteins , Mice , Animals , Extracellular Matrix Proteins/metabolism , T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Collagen/metabolism
4.
Biol Cell ; 115(4): e2200111, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36751133

ABSTRACT

Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Humans , Endoplasmic Reticulum Stress/physiology , Signal Transduction , Gene Expression , Endoplasmic Reticulum/metabolism
5.
PLoS Comput Biol ; 19(2): e1010335, 2023 02.
Article in English | MEDLINE | ID: mdl-36735746

ABSTRACT

How cell specification can be controlled in a reproducible manner is a fundamental question in developmental biology. In ascidians, a group of invertebrate chordates, geometry plays a key role in achieving this control. Here, we use mathematical modeling to demonstrate that geometry dictates the neural-epidermal cell fate choice in the 32-cell stage ascidian embryo by a two-step process involving first the modulation of ERK signaling and second, the expression of the neural marker gene, Otx. The model describes signal transduction by the ERK pathway that is stimulated by FGF and attenuated by ephrin, and ERK-mediated control of Otx gene expression, which involves both an activator and a repressor of ETS-family transcription factors. Considering the measured area of cell surface contacts with FGF- or ephrin-expressing cells as inputs, the solutions of the model reproduce the experimental observations about ERK activation and Otx expression in the different cells under normal and perturbed conditions. Sensitivity analyses and computations of Hill coefficients allow us to quantify the robustness of the specification mechanism controlled by cell surface area and to identify the respective role played by each signaling input. Simulations also predict in which conditions the dual control of gene expression by an activator and a repressor that are both under the control of ERK can induce a robust ON/OFF control of neural fate induction.


Subject(s)
Urochordata , Animals , Urochordata/genetics , Cell Differentiation , Signal Transduction/physiology , Nervous System , Ephrins/genetics , Gene Expression Regulation, Developmental
6.
Sci Rep ; 13(1): 2922, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36808161

ABSTRACT

Inositol 1,4,5-trisphosphate (IP3) plays a key role in calcium signaling. After stimulation, it diffuses from the plasma membrane where it is produced to the endoplasmic reticulum where its receptors are localized. Based on in vitro measurements, IP3 was long thought to be a global messenger characterized by a diffusion coefficient of ~ 280 µm2s-1. However, in vivo observations revealed that this value does not match with the timing of localized Ca2+ increases induced by the confined release of a non-metabolizable IP3 analog. A theoretical analysis of these data concluded that in intact cells diffusion of IP3 is strongly hindered, leading to a 30-fold reduction of the diffusion coefficient. Here, we performed a new computational analysis of the same observations using a stochastic model of Ca2+ puffs. Our simulations concluded that the value of the effective IP3 diffusion coefficient is close to 100 µm2s-1. Such moderate reduction with respect to in vitro estimations quantitatively agrees with a buffering effect by non-fully bound inactive IP3 receptors. The model also reveals that IP3 spreading is not much affected by the endoplasmic reticulum, which represents an obstacle to the free displacement of molecules, but can be significantly increased in cells displaying elongated, 1-dimensional like geometries.


Subject(s)
Calcium Signaling , Inositol 1,4,5-Trisphosphate , Inositol 1,4,5-Trisphosphate/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Endoplasmic Reticulum/metabolism , Cell Membrane/metabolism , Calcium/metabolism
7.
Interface Focus ; 12(4): 20220010, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35865503

ABSTRACT

During development, cells from a population of common progenitors evolve towards different fates characterized by distinct levels of specific transcription factors, a process known as cell differentiation. This evolution is governed by gene regulatory networks modulated by intercellular signalling. In order to evolve towards distinct fates, cells forming the population of common progenitors must display some heterogeneity. We applied a modelling approach to obtain insights into the possible sources of cell-to-cell variability initiating the specification of cells of the inner cell mass into epiblast or primitive endoderm cells in early mammalian embryo. At the single-cell level, these cell fates correspond to three possible steady states of the model. A combination of numerical simulations and bifurcation analyses predicts that the behaviour of the model is preserved with respect to the source of variability and that cell-cell coupling induces the emergence of multiple steady states associated with various cell fate configurations, and to a distribution of the levels of expression of key transcription factors. Statistical analysis of these time-dependent distributions reveals differences in the evolutions of the variance-to-mean ratios of key variables of the system, depending on the simulated source of variability, and, by comparison with experimental data, points to the rate of synthesis of the key transcription factor NANOG as a likely initial source of heterogeneity.

8.
Front Mol Biosci ; 9: 811145, 2022.
Article in English | MEDLINE | ID: mdl-35281279

ABSTRACT

Ca2+ signalling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains of reduced spatial and temporal extents develop in the junctions between the plasma membrane and the endoplasmic reticulum (ER). These microdomains rely on Ca2+ entry from the extracellular medium, via the ORAI1/STIM1/STIM2 system that mediates store operated Ca2+ entry Store operated calcium entry. The mechanism leading to local store depletion and subsequent Ca2+ entry depends on the activation state of the cells. The initial, smaller microdomains are triggered by D-myo-inositol 1,4,5-trisphosphate (IP3) signalling in response to T cell adhesion. T cell receptor (TCR)/CD3 stimulation then initiates nicotinic acid adenine dinucleotide phosphate signalling, which activates ryanodine receptors (RYR). We have recently developed a mathematical model to elucidate the spatiotemporal Ca2+ dynamics of the microdomains triggered by IP3 signalling in response to T cell adhesion (Gil et al., 2021). This reaction-diffusion model describes the evolution of the cytosolic and endoplasmic reticulum Ca2+ concentrations in a three-dimensional ER-PM junction and was solved using COMSOL Multiphysics. Modelling predicted that adhesion-dependent microdomains result from the concerted activity of IP3 receptors and pre-formed ORAI1-STIM2 complexes. In the present study, we extend this model to include the role of RYRs rapidly after TCR/CD3 stimulation. The involvement of STIM1, which has a lower KD for Ca2+ than STIM2, is also considered. Detailed 3D spatio-temporal simulations show that these Ca2+ microdomains rely on the concerted opening of ∼7 RYRs that are simultaneously active in response to the increase in NAADP induced by T cell stimulation. Opening of these RYRs provoke a local depletion of ER Ca2+ that triggers Ca2+ flux through the ORAI1 channels. Simulations predict that RYRs are most probably located around the junction and that the increase in junctional Ca2+ concentration results from the combination between diffusion of Ca2+ released through the RYRs and Ca2+ entry through ORAI1 in the junction. The computational model moreover provides a tool allowing to investigate how Ca2+ microdomains occur, extend and interact in various states of T cell activation.

9.
Cells ; 11(4)2022 02 10.
Article in English | MEDLINE | ID: mdl-35203266

ABSTRACT

Alzheimer's disease is characterized by a marked dysregulation of intracellular Ca2+ homeostasis. In particular, toxic ß-amyloids (Aß) perturb the activities of numerous Ca2+ transporters or channels. Because of the tight coupling between Ca2+ dynamics and the membrane electrical activity, such perturbations are also expected to affect neuronal excitability. We used mathematical modeling to systematically investigate the effects of changing the activities of the various targets of Aß peptides reported in the literature on calcium dynamics and neuronal excitability. We found that the evolution of Ca2+ concentration just below the plasma membrane is regulated by the exchanges with the extracellular medium, and is practically independent from the Ca2+ exchanges with the endoplasmic reticulum. Thus, disruptions of Ca2+ homeostasis interfering with signaling do not affect the electrical properties of the neurons at the single cell level. In contrast, the model predicts that by affecting the activities of L-type Ca2+ channels or Ca2+-activated K+ channels, Aß peptides promote neuronal hyperexcitability. On the contrary, they induce hypo-excitability when acting on the plasma membrane Ca2+ ATPases. Finally, the presence of pores of amyloids in the plasma membrane can induce hypo- or hyperexcitability, depending on the conditions. These modeling conclusions should help with analyzing experimental observations in which Aß peptides interfere at several levels with Ca2+ signaling and neuronal activity.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Calcium/metabolism , Homeostasis , Humans , Neurons/metabolism
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4408-4411, 2021 11.
Article in English | MEDLINE | ID: mdl-34892197

ABSTRACT

Glucagon, the main hormone responsible for increasing blood glucose levels, is secreted by pancreatic alphacells in a Ca2+ dependent process associated to membrane potential oscillations developed by the dynamic operation of K+, Na+ and Ca2+ channels. The mechanisms behind membrane potential and Ca2+ oscillations in alpha-cells are still under debate, and some new research works have used alpha-cell models to describe electrical activity. In this paper we studied the dynamics of electrical activity of three alpha-cell models using the Lead Potential Analysis method and Bifurcation Diagrams. Our aim is to highlight the differences in their dynamic behavior and therefore, in their response to glucose. Both issues are relevant to understand the stimulus-secretion coupling in alpha-cells and then, the mechanisms behind their dysregulation in Type 2 Diabetes.Clinical Relevance - A reliable description of the electrophysiological mechanisms in pancreatic alpha-cells is key to understand and treat the dysregulation of these cells in patients with Type 2 Diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Secreting Cells , Calcium , Glucagon , Humans , Membrane Potentials
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4412-4415, 2021 11.
Article in English | MEDLINE | ID: mdl-34892198

ABSTRACT

One remarkable dynamic cell structure is the region between the endoplasmic reticulum (ER) and the mitochondria, termed the mitochondria-associated membranes (MAM). MAMs carry out different cellular functions such as Ca2+ homeostasis and lipid synthesis, which depend on an adequate distance separating the ER and mitochondria. A decreased distance has been observed in Alzheimer's disease, Parkinson's disease, and during cancer treatment. It is unclear how dysregulation of the spatial characteristics of MAMs can cause abnormal Ca2+ dynamics which could end in cell death. In this work, a computational model was proposed to study the relationship between a decreased ER-mitochondria distance and mitochondria-induced cell death. Our results point towards the mitochondrial permeability transition pore (mPTP) as a key cell death signaling mechanism indirectly regulated by the spatial characteristics of MAMs.Clinical Relevance- The endoplasmic reticulum-mitochondria crosstalk plays an important role in the mPTP-induced apoptosis. This process could be behind neurodegeneration in Alzheimer's and Parkinson's diseases, as well as behind the induced cell death during cancer treatment.


Subject(s)
Alzheimer Disease , Neoplasms , Parkinson Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Endoplasmic Reticulum/metabolism , Humans , Mitochondria , Neoplasms/drug therapy , Neoplasms/metabolism , Parkinson Disease/drug therapy
12.
Cell Rep ; 37(5): 109932, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731613

ABSTRACT

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Endoplasmic Reticulum/drug effects , Inositol 1,4,5-Trisphosphate Receptors/agonists , Inositol 1,4,5-Trisphosphate/pharmacology , Animals , Chickens , Drug Partial Agonism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol Phosphates/pharmacology , Time Factors
13.
Dev Cell ; 56(21): 2966-2979.e10, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34672970

ABSTRACT

Precise control of lineage segregation is critical for the development of multicellular organisms, but our quantitative understanding of how variable signaling inputs are integrated to activate lineage-specific gene programs remains limited. Here, we show how precisely two out of eight ectoderm cells adopt neural fates in response to ephrin and FGF signals during ascidian neural induction. In each ectoderm cell, FGF signals activate ERK to a level that mirrors its cell contact surface with FGF-expressing mesendoderm cells. This gradual interpretation of FGF inputs is followed by a bimodal transcriptional response of the immediate early gene, Otx, resulting in its activation specifically in the neural precursors. At low levels of ERK, Otx is repressed by an ETS family transcriptional repressor, ERF2. Ephrin signals are critical for dampening ERK activation levels across ectoderm cells so that only neural precursors exhibit above-threshold levels, evade ERF repression, and "switch on" Otx transcription.


Subject(s)
Body Patterning/genetics , Embryonic Development/physiology , Embryonic Induction/physiology , Gene Expression Regulation, Developmental/physiology , Transcription Factors/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Ciona intestinalis/cytology , Ciona intestinalis/embryology , Ectoderm/cytology , Embryo, Nonmammalian/metabolism , Fibroblast Growth Factors/metabolism
14.
J Biol Chem ; 297(4): 101174, 2021 10.
Article in English | MEDLINE | ID: mdl-34499925

ABSTRACT

Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C-coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release-activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol-mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , Cytosol/metabolism , Mitochondria/metabolism , NFATC Transcription Factors/metabolism , CRISPR-Cas Systems , Calcium Channels/genetics , Endoplasmic Reticulum , Gene Knockout Techniques , HCT116 Cells , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation , NFATC Transcription Factors/genetics , T-Lymphocytes/metabolism
15.
Front Immunol ; 12: 659790, 2021.
Article in English | MEDLINE | ID: mdl-33995380

ABSTRACT

Ca2+ signaling plays an essential role in T cell activation, which is a key step to start an adaptive immune response. During the transition from a quiescent to a fully activated state, Ca2+ microdomains characterized by reduced spatial and temporal extents are observed in the junctions between the plasma membrane (PM) and the endoplasmic reticulum (ER). Such Ca2+ responses can also occur in response to T cell adhesion to other cells or extracellular matrix proteins in otherwise unstimulated T cells. These non-TCR/CD3-dependent Ca2+ microdomains rely on d-myo-inositol 1,4,5-trisphosphate (IP3) signaling and subsequent store operated Ca2+ entry (SOCE) via the ORAI/STIM system. The detailed molecular mechanism of adhesion-dependent Ca2+ microdomain formation remains to be fully elucidated. We used mathematical modeling to investigate the spatiotemporal characteristics of T cell Ca2+ microdomains and their molecular regulators. We developed a reaction-diffusion model using COMSOL Multiphysics to describe the evolution of cytosolic and ER Ca2+ concentrations in a three-dimensional ER-PM junction. Equations are based on a previously proposed realistic description of the junction, which is extended to take into account IP3 receptors (IP3R) that are located next to the junction. The first model only considered the ORAI channels and the SERCA pumps. Taking into account the existence of preformed clusters of ORAI1 and STIM2, ORAI1 slightly opens in conditions of a full ER. These simulated Ca2+ microdomains are too small as compared to those observed in unstimulated T cells. When considering the opening of the IP3Rs located near the junction, the local depletion of ER Ca2+ allows for larger Ca2+ fluxes through the ORAI1 channels and hence larger local Ca2+ concentrations. Computational results moreover show that Ca2+ diffusion in the ER has a major impact on the Ca2+ changes in the junction, by affecting the local Ca2+ gradients in the sub-PM ER. Besides pointing out the likely involvement of the spontaneous openings of IP3Rs in the activation of SOCE in conditions of T cell adhesion prior to full activation, the model provides a tool to investigate how Ca2+ microdomains extent and interact in response to T cell receptor activation.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Membrane Microdomains/metabolism , Models, Theoretical , ORAI1 Protein/metabolism , Algorithms , Cytosol/metabolism , Humans , Imaging, Three-Dimensional , Lymphocyte Activation , Protein Binding , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism
16.
Front Physiol ; 11: 602844, 2020.
Article in English | MEDLINE | ID: mdl-33281631

ABSTRACT

In pancreatic α-cells, intracellular Ca2+ ([Ca2+]i) acts as a trigger for secretion of glucagon, a hormone that plays a key role in blood glucose homeostasis. Intracellular Ca2+ dynamics in these cells are governed by the electrical activity of voltage-gated ion channels, among which ATP-sensitive K+ (KATP) channels play a crucial role. In the majority of α-cells, the global Ca2+ response to lowering external glucose occurs in the form of oscillations that are much slower than electrical activity. These Ca2+ oscillations are highly variable as far as inter-spike intervals, shapes and amplitudes are concerned. Such observations suggest that Ca2+ dynamics in α-cells are much influenced by noise. Actually, each Ca2+ increase corresponds to multiple cycles of opening/closing of voltage gated Ca2+ channels that abruptly become silent, before the occurrence of another burst of activity a few tens of seconds later. The mechanism responsible for this intermittent activity is currently unknown. In this work, we used computational modeling to investigate the mechanism of cytosolic Ca2+ oscillations in α-cells. Given the limited population of KATP channels in this cell type, we hypothesized that the stochastic activity of these channels could play a key role in the sporadic character of the action potentials. To test this assumption, we extended a previously proposed model of the α-cells electrical activity (Diderichsen and Göpel, 2006) to take Ca2+ dynamics into account. Including molecular noise on the basis of a Langevin type description as well as realistic dynamics of opening and closing of KATP channels, we found that stochasticity at the level of the activity of this channel is on its own not able to produce Ca2+ oscillations with a time scale of a few tens of seconds. However, when taking into account the intimate relation between Ca2+ and ATP changes together with the intrinsic noise at the level of the KATP channels, simulations displayed Ca2+ oscillations that are compatible with experimental observations. We analyzed the detailed mechanism and used computational simulations to identify the factors that can affect Ca2+ oscillations in α-cells.

17.
Sci Rep ; 10(1): 3924, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127570

ABSTRACT

Mitochondria play an essential role in bioenergetics and cellular Ca[Formula: see text] handling. The mitochondrial permeability transition pore (mPTP) is a non-specific channel located in the inner mitochondrial membrane. Long-lasting openings of the pore allow the rapid passage of ions and large molecules, which can result in cell death. The mPTP also exhibits transient, low conductance openings that contribute to Ca[Formula: see text] homeostasis. Although many regulators of the pore have been identified, none of them uniquely governs the passage between the two operating modes, which thus probably relies on a still unidentified network of interactions. By developing a core computational model for mPTP opening under the control of mitochondrial voltage and Ca[Formula: see text], we uncovered the existence of a positive feedback loop leading to bistability. The characteristics of the two stable steady-states correspond to those of the two opening states. When inserted in a full model of Ca[Formula: see text] handling by mitochondria, our description of the pore reproduces observations in mitochondrial suspensions. Moreover, the model predicted the occurrence of hysteresis in the switching between the two modes, upon addition and removal of free Ca[Formula: see text] in the extra-mitochondrial medium. Stochastic simulations then confirmed that the pore can undergo transient openings resembling those observed in intact cells.


Subject(s)
Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Models, Biological , Calcium/metabolism , Membrane Potential, Mitochondrial , Mitochondrial Permeability Transition Pore , Protein Conformation
18.
Article in English | MEDLINE | ID: mdl-31110132

ABSTRACT

Intracellular Ca2+ signals are well organized in all cell types, and trigger a variety of vital physiological processes. The temporal and spatial characteristics of cytosolic Ca2+ increases are mainly governed by the fluxes of this ion across the membrane of the endoplasmic/sarcoplasmic reticulum and the plasma membrane. However, various Ca2+ transporters also allow for Ca2+ exchanges between the cytoplasm and mitochondria. Increases in mitochondrial Ca2+ stimulate the production of ATP, which allows the cells to cope with the increased energy demand created by the stimulus. Less widely appreciated is the fact that Ca2+ handling by mitochondria also shapes cytosolic Ca2+ signals. Indeed, the frequency, amplitude, and duration of cytosolic Ca2+ increases can be altered by modifying the rates of Ca2+ transport into, or from, mitochondria. In this review, we focus on the interplay between mitochondria and Ca2+ signaling, highlighting not only the consequences of cytosolic Ca2+ changes on mitochondrial Ca2+, but also how cytosolic Ca2+ dynamics is controlled by modifications of the Ca2+-handling properties and the metabolism of mitochondria.


Subject(s)
Calcium Signaling , Cytoplasm/metabolism , Mitochondria/metabolism , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism
19.
Int J Dev Biol ; 63(3-4-5): 131-142, 2019.
Article in English | MEDLINE | ID: mdl-31058292

ABSTRACT

Early embryonic development, from the zygote to the blastocyst, is a paradigm of a dynamic, self-organised process. It involves gene expression, mechanical interactions between cells, cell division and inter- and intracellular signalling. Imaging and transcriptomic data have significantly improved our understanding of early embryogenesis in mammals. However, they also reveal a great level of complexity. How the genetic, mechanical, and regulatory processes interact to ensure reproducible development is thus much investigated by computational modelling, which allows a dissection of the mechanisms controlling cell fate decisions. In this review, we discuss the main types of modelling approaches that have been used to investigate the dynamics of preimplantation mammalian development. We also discuss the insights provided by modelling into our understanding of the specification processes leading to the three types of cells in the embryo 4.5 days after fertilization: the trophectoderm, the epiblast and the primitive endoderm.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Models, Biological , Animals , Blastocyst/cytology , Cell Differentiation , Cell Lineage , Computational Biology , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Endoderm/cytology , Mice , Signal Transduction , Zygote/metabolism
20.
Semin Cell Dev Biol ; 94: 11-19, 2019 10.
Article in English | MEDLINE | ID: mdl-30659886

ABSTRACT

About 30 years after their first observation, Ca2+ oscillations are now recognised as a universal mechanism of signal transduction. These oscillations are driven by periodic cycles of release and uptake of Ca2+ between the cytoplasm and the endoplasmic reticulum. Their frequency often increases with the level of stimulation, which can be decoded by some molecules. However, it is becoming increasingly evident that the widespread core oscillatory mechanism is modulated in many ways, depending on the cell type and on the physiological conditions. Interplay with inositol 1,4,5-trisphosphate metabolism and with other Ca2+ stores as the extracellular medium or mitochondria can much affect the properties of these oscillations. In many cases, these finely tuned characteristics of Ca2+ oscillations impact the physiological response that is triggered by the signal. Moreover, oscillations are intrinsically irregular. This randomness can also be exploited by the cell. In this review, we discuss evidences of these additional manifestations of the versatility of Ca2+ signalling.


Subject(s)
Calcium Signaling , Calcium/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...